3D Bioplotter Research Papers

Displaying all papers by T. Link (2 results)

A new printable and durable N,O-carboxymethyl chitosan–Ca2+–polyphosphate complex with morphogenetic activity

Journal of Materials Chemistry B 2015 Volume 3, Issue 8, Pages 1722-1730

Biomimetic materials have been gaining increasing importance in tissue engineering since they may provide regenerative alternatives to the use of autologous tissues for transplantation. In the present study, we applied for bioprinting of a functionalized three-dimensional template, N,O-carboxymethyl chitosan (N,O-CMC), mimicking the physiological extracellular matrix. This polymer, widely used in tissue engineering, has been provided with functional activity by integration of polyphosphate (polyP), an osteogenically acting natural polymer. The two polymers, N,O-CMC and polyP, are linked together via Ca2+ bridges. This N,O-CMC + polyP material was proven to be printable and durable. The N,O-CMC + polyP printed layers and tissue…

Modular Small Diameter Vascular Grafts with Bioactive Functionalities

PloS One 2015 Volume 10, Issue 7, Article e0133632

We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed…